فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی










متن کامل


نشریه: 

Scientia Iranica

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    29
  • شماره: 

    4 (Transactions D: Computer Science and Engineering and Electrical Engineering)
  • صفحات: 

    1898-1903
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    39
  • دانلود: 

    0
چکیده: 

Classification of sleep stages is an efficient way of diagnosing sleep problems based on processing the bio-signals (ECG, EEG, EOG, and PPG). The less complex this signal is, the better the detection and processing will be. Feature extraction methods that are done manually are tedious and time-consuming. On the contrary, those features with no hand intervention are called deep features that are usually extracted from images. Analysis of the time-frequency characteristics of non-static bio-signals is of importance since it can provide useful information. The current study aimed to extract the time-frequency image using ECG signal spectrogram as well as the deep features using the convolutional neural network. After extracting the deep features, sleep stages were classified based on deep transfer learning method. Network training was then performed using one of the ECG signals, and testing was done considering the other ECG signal channel. According to the findings, it is possible to detect sleep stages with acceptable accuracy and different amplitudes of signals. Finally, the accuracy and sensitivity values of the sleep stages were measured as 98. 92% and 96. 52%, respectively.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 39

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1397
  • دوره: 

    10
  • شماره: 

    2
  • صفحات: 

    267-272
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    477
  • دانلود: 

    107
چکیده: 

تخریب و تنزل زیستگاه رودخانه ها موجب از دست دادن تنوع زیستی و هم چنین در ارتباط با سلامت بوم سازگان وکیفیت آب می باشد. یکی از روش های مناسب جهت تعیین سلامت و تاثیر فعالیت های انسانی بر کاهش کیفیت رودخانه ها، ارزیابی آن ها با استفاده از جمعیت درشت بی مهرگان کف زی می باشد. هدف از این مطالعه ارزیابی سلامت رودخانه زرین گل با استفاده از شاخص signal می باشد. نمونه های کف زی با استفاده از سوربرسمپلر با سطح پوشش 900 سانتی متر مربع در فصول زمستان و بهار از 4 ایستگاه (بالادست رودخانه، در موقعیت های خروجی مزارع پرورش ماهی و منطقه جنگلی) با سه تکرار گرفته شد. در مجموع تعداد 1971 نمونه از درشت بی مهرگان کف زی شناسایی شدند که شامل 19 خانواده و 8 راسته بودند. نتایج نشان داد که امتیاز شاخص signal در بین ایستگاه های نمونه برداری مشابه و در یک چهارم a با کیفیت مناسب قرار گرفته اند. اما امتیاز شاخص signal 2 در ایستگاه 4 در یک چهارم b با آلودگی نسبی به دست آمد. براساس نتایج به دست آمده از پراکنش بزرگ بی مهرگان کف زی و شاخص زیستی، تاثیر عوامل انسانی بر روی نهر زرین گل کاملا مشهود بوده و از ایستگاه های دست نخورده (1 و 3) به طرف ایستگاه های (2 و 4) که تحت تاثیر انواع پساب مزارع پرورش ماهی قزل آلای رنگین کمان قرار داشتند شرایط نامطلوب تری را از نظر آلودگی دارا بودند.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 477

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 107 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    9
  • شماره: 

    2
  • صفحات: 

    33-47
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    240
  • دانلود: 

    0
چکیده: 

Recently permutation multimedia ciphers were broken in a chosen-plaintext scenario. That attack models a very resourceful adversary which may not always be the case. To show insecurity of these ciphers, we present a cipher-text only attack on speech permutation ciphers. We show inherent redundancies of speech can pave the path for a successful cipher-text only attack. To that end, regularities of speech are extracted in time and frequency using short time Fourier transform. We show that spectrograms of cipher-texts are in fact scrambled puzzles. Then, different techniques including estimation, image processing, and graph theory are fused together in order to create and solve these puzzles. Conducted tests show that the proposed method achieves accuracy of 87: 8% and intelligibility of 92: 9%. These scores are 50: 9% and 34: 6%, respectively, higher than scores of previous method. Finally a novel method, based on moving spectrogram distance, is proposed that can give accurate estimation of segment length of the scrambler system.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 240

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2008
  • دوره: 

    3
  • شماره: 

    2
  • صفحات: 

    64-70
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    260
  • دانلود: 

    0
چکیده: 

Objective: To obtain abnormalities in quantitative Electroencephalography (QEEG) and to observe connectivity between electrodes in children with Asperger disorder.Method: In this study, spectrogram criteria and coherence values are used as a tool for evaluating QEEG in 15 children with Asperger disorder (10 boys and 5 girls aged between 6 to 11 years old) and in 11 control children (7 boys and 4 girls with the same age range).Results: The evaluation of QEEG using statistical analysis and spectrogram criteria demonstrates that the relaxed eye-opened condition in gamma frequency band (34-44Hz) has the best distinction level of 96.2% using spectrogram. The children with Asperger disorder had significant lower spectrogram criteria values (p<0.01) at Fp1 electrode and lower values (p<0.05) at Fp2 and T6 electrodes. Coherence values at 171 pairs of EEG electrodes indicate that the connectivity at (T4, P4), (T4, Cz), (T4, C4) electrode pairs and (T4, O1) had significant differences (p<0.01) in the two groups in the gamma band.Conclusions: It is shown that gamma frequency band can discriminate 96.2% of the two groups using the spectrogram criteria. The results demonstrate that there are more abnormalities in the prefrontal and right temporal lobes using spectrogram criteria and there are more abnormalities in the connectivity of right temporal lobe with the other lobes in the gamma frequency band.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 260

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Khalilabadi Mohammad Reza

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    8
  • شماره: 

    1
  • صفحات: 

    10-15
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    24
  • دانلود: 

    0
چکیده: 

The abstract should include the One of the most exciting topics for researchers over the past few years is detecting underwater acoustic noises. Meanwhile, the complicated nature of the ocean makes this task very challenging. Also, making signals formatted data compatible with machine learning approaches needs much knowledge in signal processing for feature detection. This paper proposed a method to overcome these challenges, which extracts features with Convolutional Neural Network (CNN) and Mel-spectrogram (converting signal data to images). This method needless knowledge in signal processing and more knowledge in machine learning; because using CNNs find the hidden pattern and knowledge of the data automatically. The proposed approach detected the presence of the ships and categorized them into different kinds of them with 99% accuracy that is a noticeable improvement considering state of the art. The performed CNN models consist of 2 CNN layers for feature extraction and a Dense layer for classification the underwater ship noises.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 24

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    21
  • شماره: 

    72
  • صفحات: 

    49-67
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    54
  • دانلود: 

    16
چکیده: 

صدای یک انسان حاوی خصوصیاتی از قبیل: قومیت، جنسیت، احساس، سن و اطلاعات دیگری از فرد است و موضوع تشخیص گوینده به شناسایی هویت افراد بر اساس صدای آنها می پردازد. اگرچه محققان در طول سال های گذشته در این زمینه فعالیت داشته اند و روش هایی برای بهبود دقت تشخیص گوینده پیشنهاد داده اند اما هنوز چالش هایی در این زمینه وجود دارد. در این مقاله یک روش جدید تشخیص گوینده مبتنی بر فیلترهای گابور و شبکه های عصبی کانولوشنال ارایه شده است. در روش پیشنهادی، ابتدا اسپکتروگرام سیگنال صحبت فرد تشکیل می شود. سپس با طراحی موثر فیلترهای گابور، بانک فیلتر گابور ایجاد می گردد. در مرحله ی بعد اسپکتروگرام سیگنال از بانک فیلتر گابور عبور داده شده و ویژگی های سیگنال صحبت استخراج می شود. در مرحله ی آخر با استفاده از یک شبکه ی عصبی کانولوشنال، گوینده شناسایی می شود. برای ارزیابی روش پیشنهادی از دو پایگاه داده ی Aurora2 و TIMIT استفاده شده است. نتایج نشان می دهد که روش پیشنهادی دقت بهتری نسبت به روش های پیشین دارد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 54

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 16 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2008
  • دوره: 

    3
  • شماره: 

    4
  • صفحات: 

    4-10
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    321
  • دانلود: 

    0
چکیده: 

Objective: to evaluate the brain signals in children with autism disorder in many different conditions of quantitative Electroencephalography (qEEG) recordings in order to highlight abnormalities and to characterize this group.Method: In this study, spectrogram was used as a tool for evaluating qEEG in 15 children with autism disorders (13 boys and 2 girls aged between 6 to 11 years old) and in 11 normal children (7 boys and 4 girts with the same age range). signals of the two groups were recorded in nine conditions. Results: The recorded signals with the relaxed eye-opened condition in alpha band, those recorded with looking at a stranger's picture condition in beta band, and the ones obtained with children looking at inverted stranger's picture in the same beta band show the best discrimination of 92.3%, 88,9% and 88.9%respectively using spectrogram. Conclusion: Among the several different EEG recordings, the relaxed eye-opened condition in alpha band had been the best condition for discriminating the two groups using spectrogram. More abnormalities were observed in the prefrontal lobe and the left brain hemisphere in children with autism disorders.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 321

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1391
  • دوره: 

    6
  • شماره: 

    4
  • صفحات: 

    85-95
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    904
  • دانلود: 

    213
چکیده: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 904

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 213 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسنده: 

NASERSHARIF BABAK | Abdali Sara

اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    1
تعامل: 
  • بازدید: 

    148
  • دانلود: 

    0
چکیده: 

A SOLUTION FOR SEPARATING SPEECH FROM MUSIC signal AS A SINGLE CHANNEL SOURCE SEPARATION IS NON-NEGATIVE MATRIX FACTORIZATION (NMF). IN THIS APPROACH spectrogram OF EACH SOURCE signal IS FACTORIZED AS MULTIPLICATION OF TWO MATRICES WHICH ARE KNOWN AS BASIS AND WEIGHT MATRICES. TO ACHIEVE PROPER ESTIMATION OF signal spectrogram, WEIGHT AND BASIS MATRICES ARE UPDATED ITERATIVELY. TO ESTIMATE DISTANCE BETWEEN signal AND ITS ESTIMATION A COST FUNCTION IS USED USUALLY. DIFFERENT COST FUNCTIONS HAVE BEEN INTRODUCED BASED ON KULLBACK-LEIBLER (KL) AND ITAKURA-SAITO (IS) DIVERGENCES. IS DIVERGENCE IS SCALE-INVARIANT AND SO IT IS SUITABLE FOR THE CONDITIONS IN WHICH THE COEFFICIENTS OF signal HAVE A LARGE DYNAMIC RANGE, FOR EXAMPLE IN MUSIC SHORT-TERM SPECTRA. BASED ON THIS IS PROPERTY, IN THIS PAPER, WE PROPOSE TO USE IS DIVERGENCE AS COST FUNCTION OF NMF IN THE TRAINING STAGE FOR MUSIC AND ON THE OTHER HAND WE SUGGEST TO USE KL DIVERGENCE AS NMF COST FUNCTION IN THE TRAINING STAGE FOR SPEECH. MOREOVER, IN THE DECOMPOSITION STAGE, WE PROPOSE TO USE A LINEAR COMBINATION OF THESE TWO DIVERGENCES IN ADDITION TO A REGULARIZATION TERM WHICH CONSIDERS TEMPORAL CONTINUITY INFORMATION AS A PRIOR KNOWLEDGE. EXPERIMENTAL RESULTS ON ONE HOUR OF SPEECH AND MUSIC, SHOWS A GOOD TRADE-OFF BETWEEN signal TO INFERENCE RATIO (SIR) OF SPEECH AND MUSIC IN COMPARISON TO CONVENTIONAL NMF METHODS. ...

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 148

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

Abdzadeh Ziabari Pedram | Veisi Hadi

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    11
  • شماره: 

    1
  • صفحات: 

    119-129
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    47
  • دانلود: 

    0
چکیده: 

Automatic Speaker Verification (ASV) systems have proven to bevulnerable to various types of presentation attacks, among whichLogical Access attacks are manufactured using voiceconversion and text-to-speech methods. In recent years, there has beenloads of work concentrating on synthetic speech detection, and with the arrival of deep learning-based methods and their success in various computer science fields, they have been a prevailing tool for this very task too. Most of the deep neural network-based techniques forsynthetic speech detection have employed the acoustic features basedon Short-Term Fourier Transform (STFT), which are extracted from theraw audio signal. However, lately, it has been discovered that the usageof Constant Q Transform's (CQT) spectrogram can be a beneficialasset both for performance improvement and processing power andtime reduction of a deep learning-based synthetic speech detection. In this work, we compare the usage of the CQT spectrogram and some most utilized STFT-based acoustic features. As lateral objectives, we consider improving the model's performance as much as we can using methods such as self-attention and one-class learning. Also, short-duration synthetic speech detection has been one of the lateral goals too. Finally, we see that the CQT spectrogram-based model not only outperforms the STFT-based acoustic feature extraction methods but also reduces the processing time and resources for detecting genuine speech from fake. Also, the CQT spectrogram-based model places wellamong the best works done on the LA subset of the ASVspoof 2019 dataset, especially in terms of Equal Error Rate.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 47

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button